A Real Final Exam: Principles of Technology

Well, since entering K-12 education in the 2004/2005 school year, I have now written and administered my first “real” semester exams!

While I have always given exams at the conclusion of the semesters, I have never really given a genuine exam “experience”. There would be a test. That test usually consisted of 50 questions. 25 of the questions were True/False and 25 were Multiple Choice. The students were given a single sentence review guide of “Always Be True to Yourself”.

Now, with that as the review guide, I think you could safely guess that the answers were “B” and “True”. Your guess would be correct. Sadly, I did have students fail that test.

The test was not a “give-me grade” since there was usually a major end-of-year project that the majority of their semester grade was based upon. This final was created so we could simply check a box that said we gave a paper final.

This year, I opted to write and administer a genuine rigorous exam as I was not using any major end-of-year projects.

Principles of Technology (EOY) Final Exam – Test

Principles of Technology (EOY) Final Exam – Answer Key

Maximum Height & Range Calculator

As you can see, this is a bit more rigorous of a test. In fact, all of the questions require a calculated answer.

As I have several students who have had no exposure to trigonometry, I have had to provide them with an Excel spreadsheet that has the formulas for solving maximum height and range problems. That spreadsheet is provided above.

Once the tests are completed, I will analyze student performance in another post.

Spring Exam Exemptions

It is that time of the year again. It’s time for spring semester exams and ’tis exemption season! This is the season when students start seeking if they qualify to be exempt from having to take the semester exam in a given class.

Each school I have had the opportunity to work at does this process differently and each school has used different criteria to determine eligibility for exemptions.

Exemptions (Spring 2017 Finals)
Exemptions (Spring 2017 Finals)

Here, you can see that I have a total of 146 students. There are 88 students enrolled in Business Information Management (BIM) across 4 sections. There are 15 students in my single section of Computer Science I. There are 25 students in my single section of Principles of Technology. There are 18 students in my single section of Robotics & Automation.

As you can see in the chart, 51 of the 88 BIM students are eligible to be exempt from their spring semester exam. This means that 57.9% of my BIM students are eligible to be exempt from their exam!

In Computer Science, that percentage rises to 66.7% are exempt and in Robotics and Automation is continued to climb us to 72.2%!

Unfortunately, in my Principles of Technology, the percentage plummets to 48%. This has been due to poor grade performance because many teams elected to not submit required documentation with their projects throughout the semester.

As Computer Science, Robotics & Automation, and Principles of Technology are stand-alone single-section courses, let’s take a quick look at how each of the BIM sections performed individually.

BIM Exemptions (Spring 2017 Finals)
BIM Exemptions (Spring 2017 Finals)

Here is the break-out of the 4 sections of BIM that I teach.

While the average for all 4 sections of BIM was 57.9%, 1 section performed well above that average, 1 section section performed well below that average, and the other 2 held pretty close to that average.

  • 2(B) has 10 of 23 students qualifying for exemptions, which is 43.4%.
  • 3(B) has 14 of 23 students qualifying for exemptions, which is 60.8%.
  • 4(B) has 14 of 19 students qualifying for exemptions, which is 73.6%.
  • 4(A) has 13 of 23 students qualifying for exemptions, which is 56.5%.

Compared to past years, this is close to what I have experienced as far as exam exemption qualification is concerned.

Principles of Technology – Semester Grade Closing

The semester exam in Principles of Technology was given today and the final grades for this course are ready for posting.

1st Semester - Principles of Technology (Pre-Exam)
1st Semester – Principles of Technology (Pre-Exam)
1st Semester - Principles of Technology (Post-Exam)
1st Semester – Principles of Technology (Post-Exam)

As you can see, the grades in this class did shift to the right.

F’s = 1 < – > 0
C’s = 5 < – > 4
B’s = 8 < – > 10
A’s = 11 < – > 11

While the total number of A’s remained unchanged, the number of B’s increased and the number of C’s and F’s decreased.

This class had a semester failure rate of 0%!

QR Electromagnetism

Upon returning from Thanksgiving Break, we’ll be starting a study of electromagnetism in my Principles of Technology class. To start with, we’ll be doing a QR Knowledge Hunt.

Electromagnetism Knowledge Hunt Cards

The 15 cards are placed on the walls around random parts of the main hallway. The class is broken into 12 teams of 2 and each team is assigned a starting number. Teams must move through all 15 cards in any order they would like as long as there is no unnecessary “congregating” around any single card.

Electromagnetism Knowledge Hunt Card #1
Electromagnetism Knowledge Hunt Card #1

This particular knowledge hunt requires the students to utilize a QR scanner to “read” the question.

They must scan the QR code and then either use their existing knowledge or research skills to answer the question. The answers are then recorded on a provided answer document, which is submitted for a grade from each team. Only one answer document is needed from each team as long as both team members names are on the answer document.

Here are the questions they are having to answer (in no particular order):

  1. In electromagnetism, electric current is measured using which SI unit?
  2. In electromagnetism, what does the SI unit of a coulomb measure?
  3. In electromagnetism, what does the SI unit of a farad measure?
  4. In electromagnetism, what does the SI unit of a tesla measure?
  5. In electromagnetism, what does the SI unit of a volt measure?
  6. In electromagnetism, what does the SI unit of a watt measure?
  7. In electromagnetism, what does the SI unit of an ohm measure?
  8. Nikola Tesla is best known for his work on what?
  9. The electromagnetic force is one of the 4 forces of nature.
  10. What are the names of the poles of a magnet?
  11. What electrical charge discovery is Thomas Edison credited with that was the “opposite” of the work of Nikola Tesla?
  12. What happens when identical poles of a magnet are placed near each other?
  13. What happens when opposite poles of a magnet are placed near each other?
  14. Who is credited with the discovery of induction (production of an electromotive force (ie voltage) as a result of the interaction between two magnetic fields)?
  15. Who is the French mathematician and physicist, considered to be the father of electrodynamics?

Following the delivery of the exercise, I will be posting an answer key to this exercise.

Trebuchet Assault

Recently, in Principles of Technology we wrapped-up motion and acceleration with a project involving construction of a small-scale trebuchet made of popsicle sticks, rubber bands, and any other materials that could be secured to defend an assigned army.

Soldiers Guarding the Trebuchet
Soldiers Guarding the Trebuchet

We competed in a bracket elimination system. Each team started with their trebuchet and 20 soldiers. Each team took one turn shooting at the other. Any soldiers who are hit were removed from play.

At least 2 soldiers were required to be standing to fire the trebuchet. Students asked during the competition if they could use their “dead” soldiers as ammunition. I agreed and it turned out to be surprisingly effective.

If the trebuchet itself was hit, it was unable to return fire for one round to undergo “repairs”. At least 5 soldiers were required to complete repairs to the trebuchet.

If a team dropped below the minimum number of required soldiers for their next move, they were eliminated.

The students found the entire game very interesting and understood the physics behind all of it.

For a final battle, we broke everyone into 2 large groups and fought against each other in a rapid open-fire exercise.